This book represents a concise summary of non-relativistic quantum mechanics on the level suitable for university students of physics. It covers, perhaps even slightly exceeds, a one-year course of about 50 lectures, requiring basic knowledge of calculus, algebra, classical mechanics and a bit of motivation for the quantum adventure. The exposition is succinct, with minimal narration, but with a maximum of explicit and hierarchically structured mathematical derivations. The text covers all essential topics of university courses of quantum mechanics – from general mathematical formalism to specific applications. The formulation of quantum theory is accompanied by illustrations of the general concepts of elementary quantum systems. Some subtleties of mathematical foundations are overviewed, but the formalism is used in an accessible, intuitive way. Besides the traditional topics of non-relativistic quantum mechanics, such as single-particle dynamics, symmetries, semiclassical and perturbative approximations, density-matrix formalism, scattering theory, theory of angular momentum, description of many-particle systems – the course also touches upon some modern issues, including quantum entanglement, decoherence, measurement, nonlocality, and quantum information. Historical context and chronology of basic achievements is outlined in brief remarks. The book is intended for beginners as a supplement to lectures, however, it may also be used by more advanced students as a compact and comprehensible overview of elementary quantum theory.